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The low temperature district heating perspective

by Kristina Lygnerud, Swedish Environmental Institute

Who is presenting to you? - Kristina Lygnerud

Assistant professor in energy technology at Halmstad University since 2015

Intraprenur in district energy at the Swedish Environment Research Institute
since 2021 (earlier energy group manager)

Been active with district heating research since 2004. PhD in 2010 with “Risk
management in district heating systems”- NOT AN ENGINEER ©

Coordinate ReUseHeat (H2020: EU)

Active in the research field of business model innovations
On the DHC+ board since 2018 (chair since 2021)

WWW.reuseheat.eu @ReUseHeat
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The low temperature district heating perspective SEEnergies @g®

by Kristina Lygnerud, Swedish Environmental Institute
Agenda
1. The waste heat recovery potential
2. ReUseHeat demonstrators and their key learnings

3. 9 factors to consider when installing low temperature district
heating from the IEA-DHC project “Annex TS2- low temperature

district heating implementation”

4. Conclusions

WWW.reuseheat.eu @ReUseHeat
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by Kristina Lygnerud, Swedish Environmental Institute

1. The waste heat potential
° ° Table 1
Ind UStrIaI Wa Ste heat ln the E U Survey of annual volumes of recovered industrial excess heat supplied to national

district heating sectors during 2014, and the corresponding proportions of the heat

- 25% of the EU heating dema nd/yr supply to these national district heating sectors. Sources for this information are
. . . referenced in the text
- A Sma" fraCtlon IS recoverEd into DH Industrial heat recovery, P| Proportion of total heat supply
Denmark 2.6 2.1%
Finland 29 2.3%
France 2.2 2.4%
Germany 4.0 1.6%
Russia 330.8 6.0%
Sweden 17.8 9.0k

Low temperature waste heat in the EU

- 10% of the EU heating demand/yr
- A very small fraction is recovered into DH

Sources: Lygnerud & Werner 2018, Risk assessment of industrial excess heat recovery in district heating systems samt www.reuseheat.eu

REUSEHEGT
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. Food production 0.3%
1. The waste heat potential

The urban heat sources

- 25% of the EU heating demand/yr
- A small fraction is recovered into DH

Food retail 4% l Metro 3%

Service sector
buildings 21%

Residential sector

buildings 8%

Source: www.reuseheat.eu: Handbook

WWW.reuseheat.eu @ReUseHeat
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2. ReUseHeat demonstrators and key learnings
Datacenter heat recovery

Key learnings

* Keep distance between heat source & customer as short as possible
* Alow temperature DHN is needed for making use of the heat

e Replicability is limited: copy paste solutions are rare

* Heat recovery is not the core business of the datacenter and therefore of limited interest

 Heat recovery is news to datacenter owners, enegy companies and installers (leads to long pay backs)
* Risk management was applied in a connection to the high temperature DHN

* Datacenters scale up gradually, a ready building does not equal full IT loads

* There will be more waste heat than can be used

* Hot water installations need to be agreed with the construction company for maximized efficeincy

{5

RIEUSEHIEGT
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2. ReUseHeat demonstrators and key learnings

Service Sector Building heat recovery (hospital)

Key learnings
* Special attention should be given to agreement with public entities (extended terms and deadlines)
e Sensors and control equipment are important to recognize deviances quickly

e Cooling towers exist in many buildings, the potential is large

* Full year heat recovery is the efficient level, seasonal heat recovery is not sufficient

* Replicability is limited: copy paste solutions are rare

* In depth knowledge of building needed to fit installation

 The equipment will need a long fitting period

* Pandemic and extreme weather complicated the installation

REUSEHEGT
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2. ReUseHeat demonstrators and key learnings

Infrastructure heat recovery (metro)
A, S ==

Key learnings

* Keep distance between heat source & customer as short as possible
e Security regulation is heavy in metro systems: permits can take long
* Heat recovery is not the core business of the metro operator and therefore of limited interest

* Metro tunnels have metal dust in the air, this must be managed for efficient operation of heat pump
* Heat recovery in tunnels is highly modular and replicable

e Surrounding soil conditions will impact the heat of the system (clay versus other)

* The best point in time to install metro tunnel heat recovery is when a station is built or rebuilt

RIEUSEHIEGT
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2. ReUseHeat demonstrators and key learnings

Awareness building demo (dashboard)

Key learnings

e Information must be kept as simple as possible Facilty realm  yegyork [

e Data must be visualized and contextualized in a way
that the viewer understands
* Design thinking approach was efficient (collecting

avaliable and data management systems able to
provide the requested data - in ReUseHeat errors in
datastreams were detected (cross- fertilization)
... awareness can lead to end user demand for low
temperature district energy

WWW.reuseheat.eu @ReUseHeat
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The low temperature district heating perspective
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3. Key learnings from IEA-DHC work on low temperature

Implementation guidebook

Definition of low temperature district heating

www.reuseheat.eu

sEEnergies @®©

Cur defimition of 4G0H in this guidebock applies to
all reww techincdogical features and concepts using
loww temperatures, which are considered best availa-
ble from 2020 aormerard. As experienced in previous
technology gemrerations, a wicde diversity of techrno-
logy chokces in $G0DH is expected. Hence, cold dis-
trict hreating systerms are als=o inchuded in cur defints-
on of F400H. The cormesponding technology compri-
==5 all heat distribution technologises that will utilise
supply temperatures below 70 "C as the amnual awve-
rage. H4oL0OH techinology s a family of many differenit
rretwork configurations for heat distribution. Notalkh-
by, cold ard warm neetworks are siklimgs in this farmiby
of confguratons.

sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21

AnnexTS2 | Implementation of
Low-Temperature District Heating Systems

FINAL REPORT

LOW-TEMPERATURE DISTRICT HEATING
IMPLEMENTATION GUIDEBOOK

Ecited by Kristina ygnerud and Sven Werner
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by Kristina Lygnerud, Swedish Environmental Institute

3. Key learnings from IEA-DHC work on low temperature
Implementation guidebook ”
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9 cost impacts from heat supply to heat use

1. More geothermal heat extracted from wells since lower-temperature
geothermal fluid can be returned to the ground.

2. Less electricity used in heat pumps when extracting heat from heat sources
with temperatures below the heat distribution temperatures since lower
pressures can be applied in the heat pump condensers.

3. More industrial excess heat extracted since lower temperatures of the
excess heat carrier will be emitted to the environment.

4. More heat obtained from solar collectors since their heat losses are lower,
thereby providing higher conversion efficiencies.

RIEUSEHIEGT
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5. More electricity generated per unit of heat recycled from steam C
atsc il —
since higher p-t-h ratios are obtained with lower steam pressures in the ===
turbine condensers _
6. More heat recovered from flue gas condensation since the proportior -~
vaporised water (steam) in the emitted flue gases can be reduced. o TR s yATG
7. Higher heat storage capacities since lower return temperatures can bEskiSSd
in conjunction with high-temperature outputs from high-temperature heat
sources.
8. Lower heat distribution losses with lower average temperature differences
between the fluids in heat distribution pipes and the environment.
9. The ability to use plastic pipes instead of steel pipes to save cost.
WWW.reuseheat.eu @ReUseHeat
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4. Conclusions on low temperature waste heat recovery
It....

* s aglobal trend

e s technically feasible

* can enrich the heat mix of DH companies

* |owers CO2 emissions

* isnecessary in a future where combustion is no longer an option (fossil fuels, biomass?
and waste)

* necessitates standardization (contracts and permits)

* necessitates incentives to make investments comparable to investments in RES

* necessitates stakeholders to interact in new ways

* necessitates a waste heat legislation in the EU

* necessitates end user awareness and demand 7_

* necessitates a cost of carbon that reflects the true costs of its externalities T‘

sEEnergies @2@
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Thank you for listening!
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Modelling investment costs for future district heating systems in Europe

by Urban Persson (Halmstad University) and Bernd Moller (Europa-Universitat Flensburg)
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= Personal information = Personal information
= Urban Persson = Bernd Moller
= Professor in Renewable Energy Systems = Professor in Energy Systems Management
= Halmstad University (SE) = Europa-Universitat Flensburg (DE)
= Phone: +46 729 773 772 = Phone: +49-461-805 2506
= e-mail: urban.persson@hh.se = e-mail: bernd.moeller@uni-flensburg.de

sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 17


mailto:urban.persson@hh.se
mailto:bernd.moeller@uni-flensburg.de

Modelling investment costs for future district heating systems in Europe . &
by Urban Persson, Halmstad University sEEnergles @@®
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Modelling investment costs for future district heating systems in Europe

by Urban Persson, Halmstad University

= Model background:

=  Quantities and structure

=  The District Heating Distribution Capital Cost
(DHDCC) model
= Distribution system
= Network pipes circulating a media fluid
. Main output:

= The specific distribution capital cost

The specific distribution capital cost (Cy)

Total network investment cost [€] E]

I
= a-— = Annuity -
5 Annually sold district heat [%] GJ

= Basic equation, introducing trench length (L):

|
I
Ca=a-—=a

Qs i lfll
L

)
Annuity

[1/a]

( comctractian )
C

onstruction
cost constant

[€/m] )

/ R
Construction

cost coefficient

. [E&/m’] )
o

[m]

Pipe diameter | |

Independent input data

Intermediate input data
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Final output data

Specific

—

Population
density

[n/km?]

Specific
building space

[m?/capita]

Specific heat

Plot ratio

[-]

demand
[GJ/m?a]

Effective width

Heat demand
density
[GJ/m?]

[m]

|
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investment cost
[€/m]

Distribution
capital cost
[€/GJ]

A distribution capital cost model.
Source: Persson U. District
heating in future Europe:
Modelling expansion potentials
and mapping heat synergy
regions. Dissertation Thesis.
Series Nr: 3769. Goteborg:
Energy and Environment,
Chalmers University of
Technology, 2015.

Linear heat
density
[GJ)/m]

% SmartDraw Academic Edition
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= Model background:

Quantities and structure

=  The District Heating Distribution Capital Cost
(DHDCC) model
= Distribution system
= Network pipes circulating a media fluid
. Main output:

= The specific distribution capital cost

I
= a-— = Annuity -
5

The specific distribution capital cost (Cy)

Total network investment cost [€] €

Annually sold district heat [%] GJ

Numerator independent input data:

. (Cl + CZ ) da) [E

Cd=a

Independent input data

Annuity
[1/a]

( comctractian )
C

onstruction

cost constant

[€/m] )

C

onstruction
cost coefficient

. [E&/m’] )
o

Pipe diameter
[m]

Intermediate input data

Numerator

Population
density

[n/km?]

Specific
building space

[m?/capita]

Specific heat

Plot ratio

[-]

demand
[GJ/m?a]

Effective width

Heat demand

density
[GJ/m?]

[m]

—
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Linear heat
density
[GJ)/m]
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Final output data

Distribution
capital cost
[€/GJ]

A distribution capital cost model.
Source: Persson U. District
heating in future Europe:
Modelling expansion potentials
and mapping heat synergy
regions. Dissertation Thesis.
Series Nr: 3769. Goteborg:
Energy and Environment,
Chalmers University of
Technology, 2015.
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= Model background:

=  Quantities and structure

=  The District Heating Distribution Capital Cost
(DHDCC) model
= Distribution system
= Network pipes circulating a media fluid
. Main output:

= The specific distribution capital cost

The specific distribution capital cost (Cy)

Total network investment cost [€] [€]
G, 6]
a

I
= a-— = Annuity - 7
5 Annually sold district heat [—]

= Denominator independent input data:

(Cl_l'CZ'da) €
Cdza. [_
p-a-q-w G]

Independent input data

Annuity
[1/a]

( comctractian )
C

onstruction

cost constant

[€/m] )

C

onstruction

cost coefficient
\ [€/m?] )
SRR

Pipe diameter

Intermediate input data

Numerator

[m]

o .
P

opulation

density
[n/km?]

4 . \
Specific

building space

[m?/capita]

Specific heat
demand

Plot ratio

[-]

Heat demand
density
[GJ/m?]

[G)/m?a]

Effective width

[m]
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Denominator

-

Linear heat
density
[GJ)/m]
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Distribution
capital cost

®

Final output data

[€/GJ]

A distribution capital cost model.

Source: Persson U. District
heating in future Europe:

Modelling expansion potentials

and mapping heat synergy
regions. Dissertation Thesis.
Series Nr: 3769. Goteborg:
Energy and Environment,
Chalmers University of
Technology, 2015.
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= Model background:

Quantities and structure

The District Heating Distribution Capital Cost

(DHDCC) model

= Distribution system
= Network pipes circulating a media fluid
. Main output:

= The specific distribution capital cost

The specific distribution capital cost (Cy)

I
= a-— = Annuity -
5

Total network investment cost [€] €

Annually sold district heat [%] GJ

Ca

Analytical model:

_a.(Cl+Cz-da) [c.'i]]

poaoqow

Independent input data
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Final output data

Distribution
capital cost
[€/GJ]

9 A distribution capital cost model.

Source: Persson U. District
heating in future Europe:
Modelling expansion potentials
and mapping heat synergy
regions. Dissertation Thesis.
Series Nr: 3769. Goteborg:
Energy and Environment,
Chalmers University of
Technology, 2015.

Linear heat
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= Model background:

=  Quantities and structure

=  The District Heating Distribution Capital Cost
(DHDCC) model
= Distribution system
= Network pipes circulating a media fluid
. Main output:

= The specific distribution capital cost

The specific distribution capital cost (Cy)
I _ Total network investment cost [€] €
= a-— = Annuity - ] [G_]
J Annually sold district heat [?] ]

> [

= Analytical model:
(C1+Cy-d
p-a-q-w
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Heat demand \\
density
[GJ/m’]

Linear heat
density
[GJ)/m]

[€/G)]

A distribution capital cost model.

Source: Persson U. District
heating in future Europe:

Modelling expansion potentials

and mapping heat synergy
regions. Dissertation Thesis.
Series Nr: 3769. Goteborg:
Energy and Environment,
Chalmers University of
Technology, 2015.

% SmartDraw Academic Edition

23




Modelling investment costs for future district heating systems in Europe

by Urban Persson, Halmstad University

sEEnergies @ge

= Model background:

= Previous developments and results (Heat Roadmap Europe)
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Share of Total Heat Market

Three-fold expansion potential for district heating in 83 studied cities in BE, DE, FR, and NL.
Source: Persson U, Werner S. Heat distribution and the future competitiveness of district
sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 heating. Applied Energy. 2011;88:568-76. 24
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= Model background:

= Previous developments and results (Heat Roadmap Europe)

——France -———Belgium Germany Netherlands =——Grand total

= 8
% - Three-fold feasible expansion at ~2.1 €/GJ (~7.5 €/MWh)
S 6
=
z 5
S Urban areas only ,

4 |
= .
2 !
E 3 - : :
% > | /
a |
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Share of Total Heat Market

Three-fold expansion potential for district heating in 83 studied cities in BE, DE, FR, and NL.
Source: Persson U, Werner S. Heat distribution and the future competitiveness of district
sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 heating. Applied Energy. 2011;88:568-76. 25
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= Model background:

8

7

Below 20 MJ/m2 20-50 MJ/m2 50-120 MJ/m2
1120-300 MJ/m2  mAbove 300 MJ/m2

Previous developments and results (Heat Roadmap Europe Lv S
sE - I
Marginal Distribution Fi N
Capital Cost [EUR/GJ] - I
- I
— AT ~———BE IE —
______ o —or . e —
—CZ ——DE BE N
—DK —FF - ‘
Es ‘
—e ——
................... —F —— R R ‘
N
——HR HU HU ‘
= : —
—1T —w Sk \
------ —wv —WT Léiz \|
———NL —PL NL
—PT RO zi ~§
SE S MT
E sK UK :‘f; \-
i ! ! @ Grand total Cy \
l \ \ l | l \ T T 0% 0 - ‘
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% . —
80% gqo

sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21

Share of total
heat market

%
. (]
Source: Persson U, Wiechers E, Moller B, Werner S. Heat Roadmap Sin buildingS
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Europe: Heat distribution costs. Energy. 2019;176:604-22.

At right: Heat demand density classification: Designation into five
classes corresponding to “Very sparse”, “Sparse”, “Moderate”,

“Dense”, and “Very dense” conditions.

sEEnergies @®®

-
o
c

N

®

26



Modelling investment costs for future district heating systems in Europe
by Urban Persson, Halmstad University

sEEnergies @2@

- M Odel baCkg rou n d . Below 20 MJ/m2 20-50 MJ/m2 50-120 MJ/m2

1120-300 MJ/m2  mAbove 300 MJ/m2

= Previous developments and results (Heat Roadmap Europe Lv . EEE—
s  ——
Marginal Distribution =27 50% heat market share at ~6.2 €/GJ (~22 €/MWh) p I
H average © heat market share at ~6. ~ LU _
Capital Cost [EUR/GJ] e
- -
8 o ‘
——AT ——BE IE _
\ / o oy DK ]
A e e — A/ - o B
] N/ - —cz —DE BE N
6 —DK ——FE cz ‘
—F —ES “‘ ‘
5 _ Al AL 7 A —FI ——FR y |
——HR HU HU
- FR s
4 § g k =
—LT — sk N
” > o H . . UK
° = ’ . N - ! e ——
———NL —PL NL \
BG
2 —PT RO o \
SE sl MT ‘
1 : SK —uK R X
1 PT
H e Grand total Cy ‘
0 | | | | | | | ' ' % 0% 00, 309 -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% mpomo/n"of S0 gy,
all heat o 10% 80oy o,
Share of tota| Source: Persson U, Wiechers E, Mdller B, Werner S. Heat Roadmap eMands i bUiIdingg 90% 1009,
Europe: Heat distribution costs. Energy. 2019;176:604-22.
heat market At right: Heat demand density classification: Designation into five
sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 classes corresponding to “Very sparse”, “Sparse”, “Moderate”, 27

“Dense”, and “Very dense” conditions.



Modelling investment costs for future district heating systems in Europe

by Bernd Moller, Europa-Universitat Flensburg

sEEnergies @®@

| IVI O d e | d eve I O p m e nt : \ Pan-European Thermal t|as 52 sEEnergies.eu uni-flensburg.de hh.se aau.dk "
= Physical suitability e |
n . . “ - . CENTRAL

. . : “- 7 Build
=  Future population model: Forecasting and MaASSIF, G5 /s e G 7
mapping of floor areas and heat demand Koo : : Wi
densities s et S I .
37 L AN o %y : 3 ";1)"\"!x—- : » District Heat Distribution Capital Costs BL2050
= Future heat demands, efficiency and supply : L O R ' I ———
depend on: . N AT " Pistribution Capital Costs FE2050. .,
: £ Zyagoz 3 District Heat Disrik o
. Lo iy y Valladoiid o g eat Distribution Ca ital Costs
* The energetic development of the existing & oons g el Ooms 2015
building mass sl O Gl 2 <2t Demend Densiries 82050 .
- - . . . ; > ‘." e~ ’P\'~ \A/ ReSI en -
= The intensity at which buildings are used T - el and senviceseor (Pe 5.,
.. - iben Valenss Paima g 2050 Ty/keme
* The replacement of existing building stock By R RiES 50120 Typeng
* The expansion of urban areas with new /a . e W 1205007,
building stock. oo i . 7300 W
. : G S eat Demand Deng; -
=  An assessment of future population i s tes Fe2050
Imu.. 3t Demap, N
distribution may help describing: - ™ vy Ao | " Oensives 2015
°|dDe
. . . g Mand ensit: -
=  Where to expect new-build areas, at which w8 ol . tes 2015 (e,
d en sity ‘3114;0" R ln:n"“dustrial Heat Soure,
.« . . . ) N a3 ‘-\" UStry
=  Where to anticipate a further decline in .‘ERE.Garmin,MQNW Transpory
. - USGs
population 12022, Spaﬁal_wyﬁcs

=  Where to foresee urban economic
development. booming areas” Source: Moller B, Wiechers E, Sdnchez-Garcia L, Persson U. 2022. D5.7: Spatial models and spatial analytics .
o .

results. sEEnergies - Quantification of Synergies between Energy Efficiency First Principle and Renewable * "= 4

. . - . . . E Syst . Hori 2020 Project No. 846463.
sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 fergy systems. Horizon roject o 28



Modelling investment costs for future district heating systems in Europe

by Bernd Moller, Europa-Universitat Flensburg

= Model development:
= Physical suitability

=  Future population model: Forecasting and
mapping of floor areas and heat demand
densities

= Thoughts on population development

=  There are significant differences of population
development across Europe and its regions

= |nthe past 30 years, structural change has
driven population development, e.g.:
= Trending metropolitan areas keep growing

. Transition economies of the East experience
shrinking city centres

= Rural Europe continues to be de-populated

= A myriad of causalities and heterogeneities,
rooted in the great diversity of European
countries, drives population development

=  The remotely sensed evidence of the past may
be key to understand future urban
development.

sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21
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The Global Human Settlement (GHS) multitemporal population grid has been resampled to 100m resolution. It
comprises a synthetic distribution of historical census data to remotely sensed built-up areas and their built-
up intensity. Therefore, GHS reflects urban tissue as well as demography.

Source: Moller B, Wiechers E, Sdnchez-Garcia L, Persson U. 2021. An empirical high-resolution geospatial
model of future population distribution for assessing heat demands. 7th International Conference on Smart
Energy Systems, 21-22 September, Copenhagen, Denmark.
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= Model development:
= Physical suitability

=  Future population model: Forecasting and
mapping of floor areas and heat demand
densities

= Thoughts on population development

=  There are significant differences of population
development across Europe and its regions

= |nthe past 30 years, structural change has
driven population development, e.g.:
= Trending metropolitan areas keep growing

. Transition economies of the East experience
shrinking city centres

= Rural Europe continues to be de-populated

= A myriad of causalities and heterogeneities,
rooted in the great diversity of European
countries, drives population development

=  The remotely sensed evidence of the past may
be key to understand future urban
development.
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The Global Human Settlement (GHS) multitemporal population grid has been resampled to 100m resolution. It
comprises a synthetic distribution of historical census data to remotely sensed built-up areas and their built-
up intensity. Therefore, GHS reflects urban tissue as well as demography.

Source: Moller B, Wiechers E, Sdnchez-Garcia L, Persson U. 2021. An empirical high-resolution geospatial
model of future population distribution for assessing heat demands. 7th International Conference on Smart
Energy Systems, 21-22 September, Copenhagen, Denmark.
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= Model development:
= Physical suitability

=  Future population model: Forecasting and
mapping of floor areas and heat demand
densities

= Thoughts on population development

=  There are significant differences of population
development across Europe and its regions

= |nthe past 30 years, structural change has
driven population development, e.g.:
= Trending metropolitan areas keep growing

. Transition economies of the East experience
shrinking city centres

= Rural Europe continues to be de-populated

= A myriad of causalities and heterogeneities,
rooted in the great diversity of European
countries, drives population development

=  The remotely sensed evidence of the past may

be key to understand future urban
development.
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The Global Human Settlement (GHS) multitemporal population grid has been resampled to 100m resolution. It
comprises a synthetic distribution of historical census data to remotely sensed built-up areas and their built-
up intensity. Therefore, GHS reflects urban tissue as well as demography.

Source: Moller B, Wiechers E, Sdnchez-Garcia L, Persson U. 2021. An empirical high-resolution geospatial
model of future population distribution for assessing heat demands. 7th International Conference on Smart
Energy Systems, 21-22 September, Copenhagen, Denmark.
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= Model development:
= Physical suitability

=  Future population model: Forecasting and
mapping of floor areas and heat demand
densities

= Thoughts on population development

=  There are significant differences of population
development across Europe and its regions

= |nthe past 30 years, structural change has
driven population development, e.g.:
= Trending metropolitan areas keep growing

. Transition economies of the East experience
shrinking city centres

= Rural Europe continues to be de-populated

= A myriad of causalities and heterogeneities,
rooted in the great diversity of European
countries, drives population development

=  The remotely sensed evidence of the past may
be key to understand future urban
development.
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The Global Human Settlement (GHS) multitemporal population grid has been resampled to 100m resolution. It
comprises a synthetic distribution of historical census data to remotely sensed built-up areas and their built-
up intensity. Therefore, GHS reflects urban tissue as well as demography.

Source: Moller B, Wiechers E, Sdnchez-Garcia L, Persson U. 2021. An empirical high-resolution geospatial
model of future population distribution for assessing heat demands. 7th International Conference on Smart

Energy Systems, 21-22 September, Copenhagen, Denmark.
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= Model development:
= Physical suitability

Future population model: Forecasting and mapping of floor areas and heat demand densities
A (bold) attempt to model the future distribution of population on the hectare level

Basic hypothesis: past population development in places drives future development in their neighbourhood:

Places that have experienced significant growth or decline influence locations nearby, which expose a similar trend

If areas near existing growth areas are suitable, then the attractiveness of growth areas rubs off on these

The past population increment within a defined neighbourhood can be used to calculate future population in each location

National . |
ooulation Top-down national population forecasts are used
pfoprecast to anchor population development on local levels.

Regional On the NUTS3-level, patterns
population between booming and shrinking
forecast areas become visible.

Local Empirical development

in local areas is captured
by satellite images.

population
forecast

sEEnergies webinar: Energy Efficiency, Spatial Potentials and Possible Future Developments/2022-04-21 33
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= Model development:
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Model development:

Economic suitability

Effective width and plot ratio

= Effective width: w, the relative demand for district heating pipe lengths (quota of land area and pipe length)

sEEnergies
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%

= Plot ratio: e, a city planning parameter describing the fraction between building space area and land area (product of p and a)
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Cooling, Nottingham Trent University, 6-9 September 2021, Nottingham, UK).
Left: Overview image of the Odense city district heating network of Fjernvarme Fyn (Odense, Denmark), from which input data was used for 2.264 km of trench length.
Centre: Analysis of optimal cell size for assessment of effective width at low plot ratio conditions (cell size of 1 hectare at centre left, cell size of 100 hectare at centre right)
Right: Distribution of adjusted coefficients of determination for different cell sizes to assess optimal cell size. Effective width as function of plot ratio and of number of buildings.
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Source: Sanchez-Garcia, L., Averfalk, H., Persson, U., 2021. Further investigations on the Effective Width for district heating systems. Energy Reports 7, 351-358 (Conference presentation at the 17th International Symposium on District Heating and
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= Model development:

=  Economic suitability
=  Effective width and plot ratio

sEEnergies @§®
w =max(k - xT, Wy,in)
Pipe Type Plot Ratio Number of Buildings per ha wmin [m]
n K n K
Distribution -0.7541 28.2 -0.7903 696.4 ~55
Service -0.8366 35.35 -0.9917 1592 ~45

= Effective width: w, the relative demand for district heating pipe lengths (quota of land area and pipe length)

= Plot ratio: e, a city planning parameter describing the fraction between building space area and land area (product of p and a)

Effective
width (w) [m]

400
330 x A Detached
300 and MF

A houses
250
200 = Power
150 (Detached
1;}0 y=61.838x 1*” and MF

A A houses)
50 - ™ 2
0 | |
1 15
Plot ratio (e)

Source: Persson U, Werner S. Effective Width - The Relative Demand for District Heating Pipe Lengths in City
Areas. 12th International Symposium on District Heating and Cooling, 5th to 7th of September, Tallin 2010.
p. 128-31.
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Cooling, Nottingham Trent University, 6—9 September 2021, Nottingham, UK).
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= Model development:

=  Economic suitability
=  Distribution and service pipes
=  Effective Width for a cell size of 16 ha with limit equations
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Effective width as a function of plot ratio; for distribution pipes at left and for service pipes at right. Source: Persson U, Méller B, Sdnchez-Garcia L, Wiechers E. D4.5 District heating
investment costs and allocation of local resources for EU28 in 2030 and 2050. sEEnergies - Quantification of Synergies between Energy Efficiency First Principle and Renewable

Energy Systems. Horizon 2020 Project No. 846463. https://doi.org/10.5281/zen0d0.48922712021
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| .
Model development. Limit equations at low value edges rather than power regression
=  Economic suitability mean to maintain conservative assessment of distribution costs!

=  Distribution and service pipes
=  Effective Width for a cell size of 16 ha with limit equations
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10° 10° / E

Distribution Pipes - Plot Ratio

Individual data points _4' - Individual data points
Power Regression + |=——Power Regression
- Limit Equation ; b Limit Equation N
— Limit Equation & | |=——Limit Equation e

-
o
'S

Effective width Distribution (m)
Effective width Service (m)
a:-)

10°}

o (n(pr)+35)/(0 7737+0.18559-In{pr))

w -

1 01 1 L PR il i 1 01 - il - " L

10° 102 10" 10° 10" 102 1072 10" 10° 10'
Plot Ratio (-) Plot Ratio (-)

Effective width as a function of plot ratio; for distribution pipes at left and for service pipes at right. Source: Persson U, Méller B, Sdnchez-Garcia L, Wiechers E. D4.5 District heating
investment costs and allocation of local resources for EU28 in 2030 and 2050. sEEnergies - Quantification of Synergies between Energy Efficiency First Principle and Renewable
Energy Systems. Horizon 2020 Project No. 846463. https://doi.org/10.5281/zen0d0.48922712021
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= Model development:
= Economic suitability

Construction costs by Member States

Table 2. Construction cost curve parameters for eleven European countries, with reference to previous

assessment and sources

Typical construction investment costs for district heating pipes per route length. Source:
Frederiksen S, Werner S. District Heating and Cooling: Studentlitteratur AB, Lund, 2013.
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16000 -~
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Investment cost for pipeline construction (SEK/m)
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¢ Inner city areas
® Quter city areas
A Park areas

¢ Construction site areas

0 50

100

150 200 250 300 350 400 450 500 550 600 650
DN

Range validity .
Country [Pipe diameter [mm)]) Intercept | Slope D4.5 Applied Source
Code status to
Min Max £/m £/m?
DE 25 300 664 2810 | Updated | AT, DE (AGFW, 2021)
(COWI, 2017, 2020; Kristianzen, 2021;
R. Lund, 2021; Niras A5, 201E;
DK &0 10000 | Updated DK Rambegll, 2018, 2020, 2021a, 2021b;
Rambegll & Glostrup Forsyning, 2021;
Trefor Varme, 2021)
ES 65 125 354 4314 Same ES, PT (Cuesta, 2020)
FR 65 450 - - Same FR {Roger, 2020}
HR 25 250 - * Same HR, 51 (x2) {Dorotic, 2020)
BG, CZ,
HU 25 200 - * Same HU, PL, (Edit, 2020)
RO, 5K
IT 50 400 540 2087 Same C?’S_‘E I (Denarie, 2020)
LT 70 600 71 3262 Same EE, LT, LV (Gurklieng, 2020)
NL 65 250 5458 3370 Same BE, LU, ML (Schepers et al., 2019)
Sanchez-Garcia, 2017; Svensk
SE 50 400 435 4073 Same Fl, 5E { Fjarrvarme AB, 2007)
UK 25 500 545 2236 Same IE, UK [AECOM et al., 2017)

* Provided data on construction cost curve parameters from Franos (FR), Craatis (HR], and Hungary (HU ), cannot be published dus to confidentiality agresments.

Source: Moller B, Wiechers E, Sanchez-Garcia L, Persson U. 2022. D5.7: Spatial models and spatial analytics results.
sEEnergies - Quantification of Synergies between Energy Efficiency First Principle and Renewable Energy Systems.

Horizon 2020 Project No. 846463.
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Average construction cost function based on assessed 2015 investment costs for district

heat distribution systems for three characteristic area categories: (A) Inner city areas, (B)
Outer city areas, and (C) Park areas. Source: Persson U, Wiechers E, Moller B, Werner S.
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= sEEnergies model results
= EU cost curves

= Network Costs in the European Union
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= sEEnergies model results
= EU cost curves

Network Costs in the EU - Frozen Efficiency Scenario
Ireland Greece
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Modelling investment costs for future district heating systems in Europe

by Urban Persson, Halmstad University

sEEnergies

%

= sEEnergies model results -
" EU cost curves A o s e A x

Table 5. District heating network investment costs for the EU27 member states (MS5) plus the United 1
Kingdom (UK) under the sEEnergies 2050 scenarios (Baseline (BL2050) and frozen efficiency .

[FE2050)), at anticipated 25% national heat market shares for district heating “en \
.
MS Marginal cost [€/G)]  Average cost [€/G)]  Acc. heat demand [P)/a] = Total investment [M€] . o !
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Table 5. District heating network investment costs for the EU27 member states (MS5) plus the United
Kingdom (UK) under the sEEnergies 2050 scenarios (Baseline (BL2050) and frozen efficiency
[FE2050)), at anticipated 25% national heat market shares for district heating
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Table 4. District heating network investment costs on average for EU27+UK (modelled as one single entity)
under the two sEEnergies 2050 scenarios [Baseline (BL2050) and frozen efficiency (FE2050)), by four O 1 1 1 1
anticipated levels of total heat market shares for district heating
DH heat Marginal cost Average cost Acc. heat Total investment Acc. share O 1 0 20 30 40 5 0 60 70 8 0 90 1 00
market [€/G1] [€/G)] demand [P)/a] €] distribution vs.
share [%] service pipes [%] Share of total
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Table 4. District heating network investment costs on average for EU27+UK (modelled as one single entity)
under the two sEEnergies 2050 scenarios [Baseline (BL2050) and frozen efficiency (FE2050)), by four
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Spatial analytics and the sEEnergies Index

by Bernd Moller, Europa-Universitat Flensburg

The Pan-European Thermal Atlas ver. 5.2

= Key features:

= Mapping of localised energy system
data for the EU27+UK

= Highly detailed information down to
the 1-hectare level

= |ntegration of building, industrial and
transport sectors

= Value added:

= Cross-sectoral mapping of energy
efficiency

= Easier access of attributes, better
selection and map sharing

=  QOpen Data hub for data sharing
= |llustrative Story Maps

Pan-European Thermal Atlas 5.2

sEEnergies.eu uni-flensburg.de hh.se aau.dk
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Spatial analytics and the sEEnergies Index

by Bernd Moller, Europa-Universitat Flensburg

Combining spatially distributed
information on energy efficiency to
identify local synergies

=  (Cases:

= Energy efficient buildings and future
district heating

= Sustainable heat sources for local heat
supply strategies

= Urban development, socio-economics
and energy efficiency

= Combining multisectoral efficiency
potentials to a local sEEnergies Index

sEEnergies

—
Pan-European Thermal Atlas 5.2 sEEnergies.eu uniflensburg.de hh.se aau.dk
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= Qverview
=  (09:00 Welcome

= by Brian Vad Mathiesen, Aalborg
University

= 09:05 The low temperature district ,
heating perspective " = % Fraunhofer
Fcome to the Pan-European Thermal Atlas, pe

LY

=  Presented by Kristina Lygnerud,

Swedish Environmental Institute ta version 5.21
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= 09:15 Modelling investment costs Rt o .
H . H novation Programme nder aobean Union's Hor,
for future district heating systems o e o 2020

.
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=  Presented by Urban Persson, 14 oy 20 1 s :heli'.'fr"";:fsﬂﬁml’“"; '""33J’.T,‘i:,“”J;;tt ' aldatey,
. . oo V& and sho, &
Halmstad University - L et
= (09:30 Spatial analytics and the
sEEnergies Index

=  Presented by Bernd Moller,
Europa-Universitat Flensburg

=  (09:45 Discussion and feedback
= 10:00 Webinar end
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